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Surface-directed spinodal decomposition in binary fluid mixtures
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We consider the phase separation of binary fluids in contact with a surface, which is preferentially wetted by
one of the components of the mixture. We review the results available for this problem and present numerical
results obtained using a mesoscopic level simulation technique for the three-dimensional problem.
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I. INTRODUCTION

There has been much interest in the phase-separation
namics of homogeneous binary mixtures, which have b
rendered thermodynamically unstable by a rapid quench
low the coexistence curve. The time evolution of pure b
mixtures in which the evolving system coarsens into d
mains rich in either of the components is now reasona
well-understood. These domains are characterized for
times by a single length scaleL(t);tf, wheret is the time
and the growth exponentf depends upon the system cons
ered, e.g., whether or not the order parameter is conser
the relevance of hydrodynamic effects, etc.@1#.

An experimentally important variation of this proble
considers the role of surfaces with a preferential attrac
for one of the components of the mixture. The first expe
mental study of this problem is due to Joneset al. @2# who
considered unstable polymer mixtures of polyethylene p
pylene~PEP! and perdeuterated PEP~d-PEP! in a thin-film
geometry. The surface energy of d-PEP is somewhat
than that of PEP leading, in addition to bulk phase separa
~spinodal decomposition!, to a preferential deposition o
d-PEP at any free surface. Joneset al. studied laterally aver-
aged composition profiles as a function of distance from
surface. The bulk is characterized by randomly orien
phase-separation profiles and the lateral averaging proce
does not yield a systematic behavior. However, the surf
exhibits an enrichment layer in the preferred compone
which is followed by a depletion layer. This oscillatory pr
file is time dependent and decays with a characteristic len
to the bulk composition.

This experiment motivated many further investigations
this problem. The experimental techniques and results h
been reviewed by Krausch@3# and the theoretical and nu
merical developments by Puri and Frisch@4# and Binder@4#.
To date, most numerical studies of this problem have
cused on the case of binary mixtures without hydrodyna
effects, i.e., the growth of surface wetting layers and b
domains is governed by diffusive processes. However, m
important experiments in this area involve binary fluids
contact with a surface. It is well known that macroscop
matter and energy flows, i.e., hydrodynamic effects dra
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cally alter the nature of domain growth in the bulk phas
separation problem. Therefore, it is reasonable to expect
portant physical effects to result from hydrodynamic flows
the case of surface-directed phase separation also. To un
stand some of the issues involved, we have undertake
detailed numerical simulation of this problem. In particula
we adapted mesoscopic models formulated to study b
spinodal decomposition in binary fluids to surface-direc
spinodal decomposition.

This paper is organized as follows. Section II review
available experimental, analytical, and numerical results
this problem. In Sec. III, we describe our model and t
numerical methods used. These involve an ‘‘integration’’
the Vlasov-Boltzmann equations for the binary mixture
contact with a surface. In Sec. IV, we present results
tained from our simulations. Finally, Sec. V is devoted to
summary and discussion of the results.

II. SUMMARY OF AVAILABLE RESULTS

A. Experimental studies

One of the earliest experiments on phase-separating
nary fluids near a surface is due to Guenounet al. @6#, which
considered unstable mixtures of cyclohexane~C! and metha-
nol ~M! in contact with a surface that preferred M. The su
face rapidly developed a M-rich layer, followed by a bico
tinuous domain structure. Guenounet al. found that domain
growth was characterized by a number of different len
scales. Thus, the wetting layer grew asR1(t);ta with a
.0.56. The domains adjacent to the wetting layer were
isotropic and were characterized by perpendicular@L'(t)
;tb with b.0.64# and parallel@L i(t);tc with c.1# scales.

Wiltzius and co-workers@7# considered critical fluid mix-
tures of polyisoprene and PEP sealed between two qu
plates. They found that the structure factor exhibited t
peaks—one corresponding to the usual bulk domain len
scaleLb(t);t and the other corresponding to a fast leng
scaleLs(t);t3/2. Furthermore, they found that the dime
sionality of domain growth associated with the fast leng
scale wasd52 suggesting that it resulted from a rapid coa
ening in the surface layer. The rapid surface growth w
interpreted as a prelude to the formation of a complete w
ting layer on the surface. In that case, there is no incon
tency between their results and the earlier results of Guen
et al. @6#, which correspond to later times when a comple
wetting layer was already formed. Similar experiments w
also performed by Shi and collaborators@8# on mixtures of

y,
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guaiacol and glycerol-water confined in a thin-film geo
etry.

Detailed studies of the morphologies that arise for pha
separating mixtures confined to one- and two-dimensio
capillaries were performed by Tanaka and co-worker@9# on
critical and off-critical mixtures of polyvinyl methyl ethe
and water ande-caprolactone oligomer and styrene olig
mer. In particular, they clarified conditions under which t
equilibrium state is completely wet~i.e., only the preferred
phase is in contact with the surface! or partially wet ~i.e.,
both phases are in contact with the surface!. Tanaka’s group
did not observe the fast growth reported by Wiltzius a
co-workers@7,8# possibly because the quench depth in th
experiments was too large. Once the wetting layer is form
they found that its thickness grows linearly in time, i.
R1(t);t, in disagreement with the experiments of Gueno
et al. @6#. In most of their experiments, the wetting layer
finally destabilized by a Rayleigh instability and the syste
crosses over to a partially wet morphology.

B. Analytical arguments

The equilibrium behavior of immiscible binary fluids i
contact with a substrate was examined long ago by Yo
@10#. Let gA andgB be the surface energies per unit area
the fluids A and B in contact with the substrate~say, gB
.gA), and lets be the surface tension between fluidsA and
B. Then, the contact angleu betweenA and the surface is
given by scosu5gB2gA . This equation has no solutio
when (gB2gA)/s.1, which corresponds to a situatio
where the preferred fluid~A! completely wets the substrate
The effects of geometry and composition can also be
cluded@9,11,12#.

The nonequilibrium problem we consider is a homog
neous critical binary mixture~at high temperature! in contact
with a surface that has a preference for one of the com
nents of the mixture. At timet50, the system is quenche
below its critical temperature and becomes unstable to ph
separation. We are interested in the dynamics of approac
the equilibrium morphology, which will consist of either pa
tially wet ~PW! or completely wet~CW! configurations.
Typically, the surface is initially coated by the preferre
component, which is then followed by the growth of th
wetting layer@9#. We focus here on the wetting layer growt

As remarked by Siggia@5#, the bicontinuous morphology
of critical or near-critical phase separating binary fluids co
sists essentially of interpenetrating ‘‘tubes.’’ When a tube
the preferred phase establishes contact with the surface l
the curvature-induced pressure gradients/L2 leads to a flow
of material from the tube to the surface. The material flux
tube can be estimated, for example, from Poiseuille law to
(s/h)L2 @5#. Then S(dR1 /dt);(s/h)L(t)2@S/L(t)2#,
where S is the surface area andS/L(t)2 is the number of
tubes. Thus,R1(t);(s/h)t for the hydrodynamic problem
a result that has been confirmed experimentally@9#. We be-
lieve that the discrepancy between this result and the ea
experimental work of Guenounet al. @6# is due to the long-
lived transient growth laws dependent upon the form of
surface potential@13#. For the diffusive case, the chemic
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potential gradient between the bulk tube,m;(s/L) @1#, and
the flat tube portion at the surface,m;0, induces a curren
j ;(s/L2) and therefore a flux per tube;s. The corre-
sponding growth law is thenR1(t);s1/3t1/3.

The wetting layer grows until it reaches the equilibriu
length ~dictated by the composition for a CW morpholog!
or is destabilized by surface fluctuations and goes over to
appropriate equilibrium PW morphology. There is also a d
namical coupling of phase separation and the growth of
wetting layer, which leads to the domains adjacent to
wetting layer being anisotropic withL'(t),L i(t) @6,4#.

C. Numerical results

One of the earliest numerical studies of the hydrodynam
problem is due to Keblinskiet al. @15# who performed mo-
lecular dynamics~MD! simulations of binary fluids (AB)
confined in a two-dimensional capillary~or a planar thin
film!. One of the cases that they study is when the w
preferentially attractsA, which is analogous to the exper
ments we have discussed earlier. In this case they obser
‘‘fast mode’’ in the surface layer but with an exponenti
growth rather than the power-law growth.

Chen and Chakrabarti@16# have studied phase separatio
in two-dimensional binary fluids near a surface through n
merical solutions of the coarse-grained model-H equations
@1# in a semi-infinite geometry. The model-H equations con-
sist of coupled dynamical equations for the order param
and the fluid velocity field. Chen and Chakrabarti conside
a surface with a long-range attraction for one of the com
nents of the mixture and impose ‘‘no-slip’’ conditions on th
velocity field at the surface. They found that the wettin
layer growth crosses over fromR1(t);t1/3 ~characteristic of
bulk diffusive growth in any dimension! to R1(t);t2/3 ~char-
acteristic of bulk hydrodynamic growth ind52). This cross-
over is associated with domains of the preferred compon
establishing contact with the surface layer and their sub
quent rapid draining into the surface layer.

Another study of modelH in a semi-infinite geometry is
due to Tanaka and Araki@17#. These authors solved th
model-H equations numerically ind53. They found that the
wetting-layer thickness grows initially asR1(t);t1/3 ~char-
acteristic of diffusive growth! and then crosses over to th
hydrodynamic regime withR(t);t. They also studied char
acteristic length scales in the layer parallel to the surface.
from the surface, they found the expected bulk-growth l
L i(t);t while in the vicinity of the surface they found
faster growth. However, it seems difficult to unambiguou
assign an exponent to this faster growth. Furthermore,
time-regime of the fast mode is considerably later than
time-scale of formation of the complete wetting layer. Th
suggests to us that the ‘‘fast growth’’ observed by Tana
and Araki should be identified with the anisotropic grow
~with L',L i) of domains in the vicinity of the wetting laye
due to orientational effects of the wetting layer, rather th
the fast mode of Wiltzius and others@7,8#. As we have dis-
cussed earlier, this fast mode is associated with the coa
dynamics that results in a complete wetting layer.
3-2
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SURFACE-DIRECTED SPINODAL DECOMPOSITION IN . . . PHYSICAL REVIEW E63 041513
Finally, we mention a MD study by Toxvaerd@18# who
investigated critical mixtures (AB) of particles interacting
through Lennard-Jones potentials. He focused on the m
phologies that arise for different wall-types, e.g., one w
attractsA whereas the other wall attractsB versus the case
where both walls attractA and B equally, etc. Using MD
simulation, he found that the system evolves into a laye
morphology with the layer being parallel to the surfa
walls. We believe that these are metastable configurat
that evolve exceedingly slowly due to the low effective d
mensionality (d51) of the system.

The paucity of detailed numerical results for binary flui
undergoing phase separation in contact with a wetting
face motivated us to undertake a mesoscopic-level sim
tion of this problem through a direct ‘‘solution’’ of the rel
evant Vlasov-Boltzmann equations.

III. DESCRIPTION OF MODEL

The subtle interplay between diffusion and convect
that occurs in phase-separating fluids makes the modelin
these systems more complicated than that of solids. The l
conservation of linear momentum and energy, which is ch
acteristic of fluids, and the associated transport of matter
energy on macroscopic scales play a crucial role dur
phase segregation. Typically, the phase separation of bi
fluids has been modeled either~a! at the microscopic level
e.g., via MD simulations or~b! at the macroscopic level via
coarse-grained hydrodynamic equations. An alternative
these approaches was introduced in Ref.@19#. The system
studied was a binary mixture consisting ofA andB particles
with short-range repulsive interactions modeled by h
spheres with equal massm and diameterd, and a long-range
Gaussian repulsion between the two componentsA and B.
The dynamics was described by coupled Vlasov-Boltzm
kinetic equations,

] f i

]t
1v•

] f i

]r
1

Fi

m
•

] f i

]v
5J@ f i , f 11 f 2#, i 51,2, ~1!

where f i(r ,v,t) are the one-particle distribution function
Fi(r ,t)52“Vi(r ), Vi(r )5*V(ur2r 8u)nj (r 8)dr 8 ~Vlasov
potential!, nj (r 8)5* f j (r 8,v,t)dv, with iÞ j , and J@ f ,g# is
the Boltzmann collision operator for hard-core interactio
@20#. The Boltzmann equation properly describes the dyna
ics of dilute gases, where the free flow of the particles
interrupted by localized binary collisions between partic
that are uncorrelated. The Vlasov term takes into account
long-range interaction in the spirit of the mean-field appro
mation: each particle now moves between collisions in
background potential generated by all the other particles
interacting with through the long-range potentialV(r ).

The above mesoscopic representation in terms of o
particle distribution functions has the advantage that the
evant conservation laws are automatically satisfied an
also provides a rigorous route to a macroscopic descrip
@21#. Computationally, the method introduced in Re
@19,22# to simulate the Vlasov-Boltzmann kinetics at the p
ticle level, i.e., coupling of the direct simulation Monte Car
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~DSMC! algorithm @23# for close-range collisions and th
grid-weighting method for the long-range repulsions@24#,
contains the essential physical ingredients of the Vlas
Boltzmann equations, and it permits the study of much b
ger systems than those used in MD calculations.

In the present work, we modify the model of Ref.@19# to
include the presence of a preferred surface. One of the c
ponents of the binary mixture~say, A) interacts with the
surface located atz50 through an attractive potentialW(z),
which decays asz23 at large distances, i.e.,W(z)52W0 if
z<r 0 and2W0(r 0 /z)3 otherwise, whereW0.0. This inter-
action potential corresponds to the case of nonretarded
der Waals interactions ind53 @25#. The wall is diffusive
@26#, i.e., particles ‘‘hitting’’ the wall are absorbed and re
emitted isotropically with a velocity drawn from a Maxwel
ian distribution with the temperature of the wall,TW . The
other wall along thez direction is purely reflective~no pre-
ferred attraction!, which allows us to run the simulations fo
longer times than if the set up was symmetric. We perform
simulations with equal fractions of the components at fix
temperature,T/Tc50.6, TW5T, whereTc is the bulk mean-
field critical temperature of the system, using the veloci
rescaling technique introduced by Berendsenet al. @27#. Be-
low Tc the bulk fluid segregates intoA rich and B rich
components, denoted by 1 and 2, respectively. The param
varied was the strength of the wall-particle interactionW0.

As discussed in Sec. II B, the wall-wetting morpholog
i.e., CW versus PW, is determined by the ratios/(g22g1),
wheres is the surface tension between the two fluid pha
1 and 2, andg1 and g2 are the corresponding wall-fluid
surface tensions. Taking into account thatA and B are par-
tially miscible, the surface tension parameters can be e
mated as follows. Consider theA-rich phase~1! with average
total particle densityn0 and average individual densitiesn1A

0

and n1B
0 , n05n1A

0 1n1B
0 . The wall-fluid surface energy is

then

g15E
0

`

dzn1A~z!W~z!. ~2!

If we neglect the interparticle spatial correlations, which
appropriate in our model if the long-range repulsion betwe
the two components is sufficiently weak, we can wr
n1A(z)5n1A

0 exp@2bW(z)#. With this assumption and usin
the fact that the phases are symmetric, we obtain the exp
sion

g22g15kBTn0f0r 0H~bW0!, ~3!

where6f0 is the average order parameter in the two phas
f05(n1A

0 2n1B
0 )/n0, and the functionH(x) depends on the

wall-interaction potential. For our choice of wall-particle in
teraction, we have
3-3
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H~x!5xFexp~x!1~1/2!E
0

1

dy exp~xy3/2!G .
The surface tensions between the two phases 1 and 2

related to the profile of the planar interface separating
equilibrium phases@28#. For our system this can be writte
as

s5mE dz$~d@nf#/dz!22~dn/dz!2% ~4!

@28,29#, where n(z)f(z)5nA(z)2nB(z), n(z)5nA(z)
1nB(z), andm5(1/12)*drV(r )r 2 with V(r ) the long-range
repulsive interaction between the two species. (N.B. Herez
stands for the distance from the center of a planar interf
separating the two bulk phases.! As remarked in@19# and is
well known for these systems@28#, f(z) is well represented
asf0tanh(z/2j), wherej is a correlation length that charac
terizes the interface thickness. Furthermore, the total den
profile n(z) is well characterized asn0@12dsech(z/2j)#,
wheref0 andn0 are the values of the order parameter a
density far from the interface. With these considerations,
surface tension between phases 1 and 2 can be comput

s5
kBTcn0G~f0 ,d!

4g2j
. ~5!

Here g21 is the range of the interspecies potent
V(r )5ag3U(gr ), where, as in @19#, we use U(x)
5p23/2exp(2x2) ~note thatkBTc5n0a/2 @19#!. The function
G(f0 ,d) has a simple algebraic form,

G~f0 ,d!5~2/3!f0
22~1/3!d21~7/15!d2f0

22~p/4!df0
2 .

Therefore, we obtain the desired ratio for Young’s conditi
as

s

g22g1
5

Tc

T

G~f0 ,d!

f0

1

4g2jr 0H~bW0!
. ~6!

The physical quantitiesj, d, andf0 have been obtained in
simulations of the interface profile atT/Tc50.6 @19# as j
.1.5g21, f0.0.8, d.0.2, and we setr 05g21. Recall that
we vary the surface potential strengthW0 and keep other
parameters fixed as specified above. We then estim
Young’s condition as corresponding tobW0

Y.0.071. We
have performed simulations withW0 /W0

Y ranging from 0.67
to about 5. The size of the system was 603603120 in units
of the potential rangeg21 and the number of particles use
was approximatelyN52.53106. For each value ofW0,
we averaged the results of 12–15 independent runs, w
ever statistical averaging was required. In the figu
presented below the unit of length isg21 and the unit of
time is the mean-free-time between collisionst5l/c,
l5(21/2pnd2)21,c5(2kBT/m)1/2, where n is the overall
particle density,d is the hard sphere diameter, andT is the
temperature.
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IV. NUMERICAL RESULTS

As discussed in the previous section,W0 /W0
Y,1 and

W0 /W0
Y.1 should correspond to the PW and CW cas

respectively. In our subsequent discussion, we will refer
W0 /W0

Y,1 as the weak-field case andW0 /W0
Y.1 as the

strong-field case. Of course, we should stress that there
additional entropic effects, which have not been accoun
for in our calculation. In general, this would raise the critic
surface field for transition from PW to CW morphologies.

Figure 1 shows three-dimensional snapshots of the ev
tion for W0 /W0

Y50.67 at timest560, 120, and 180. The
wall is located atz50 ~extreme right! and preferentially at-
tractsA though it is not completely wetted byA. The enrich-
ment layer~in A) at the surface is followed by a depletio
layer in A and this layered structure deforms continuou
into the bulk, as has been seen in various earlier studies
both the diffusive@14#, @4#, and hydrodynamic@17# cases.
Figure 2 shows laterally averaged profilesfav(z,t) vs z
~depth from the surface! for the evolution depicted in Fig. 1
at times t550, 100, 200, and 275. These profiles are o
tained by averaging the order parameter profiles in the di
tion parallel to the surface—analogous to the correspond
experimental situation@3#. There is a systematic profile at th
surface, which decays to zero~due to isotropic phase sepa
ration! in the bulk. The systematic surface profile propaga
into the bulk with the passage of time. Furthermore, the

FIG. 1. Snapshots of the evolution after a critical quench fo
weak-field caseW0 /W0

Y50.67. The equilibrium surface morpho
ogy is partially wet. The times corresponding to the pictures
~from top to bottom! t560,120,180.
3-4
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SURFACE-DIRECTED SPINODAL DECOMPOSITION IN . . . PHYSICAL REVIEW E63 041513
gree of enrichment diminishes as isotropic phase separa
in the bulk destroys the layered structure at the surface.

To characterize the morphology of the surface layer, F
3 plots the first and second zeros of the laterally avera
profiles as a function of time. After an initial transient r
gime, the position of the first and second zeros grow appr
mately linearly in time. The linear growth of the first ze
results from hydrodynamic draining of the preferred mate
to the surface through bulk tubes that make contact with
surface layer. This is in accordance with the observation
Tanaka and Araki@17#, and the mechanism for this was di
cussed in Sec. II B. Additionally, it is reasonable to exp
that the overall composition of the first and second lay
should be comparable with the average composition. Th
we expect the second zero,R2(t), to exhibit the same scaling
behavior as the first zero,R1(t).

Next we consider the evolution for the~very! strong-field
case, where the surface is completely wetted by the prefe
component. Figure 4 shows three-dimensional evolution
tures for the caseW0 /W0

Y54 at t560, 120, and 180. Notice
the perfectly layered structure at the surface. Figures 1 a
should be compared with analogous pictures for the diffus
problem@4#. Figure 5 shows the corresponding laterally a
eraged profiles att550, 100, 200, and 275. The broad fe
tures are the same as in Fig. 2, but the level of enrichm

FIG. 2. Laterally averaged order parameter profilesfav(z,t) as
a function ofz, the distance from the surface. Parameter values
the same as those for the evolution depicted in Fig. 1. The evolu
times aret550 ~dot-dashed!, 100 ~dotted!, 200 ~dashed!, and 275
~solid line!.

FIG. 3. Time-dependence of first zeroR1(t) ~circles! and sec-
ond zeroR2(t) ~triangles! of the laterally averaged profiles show
in Fig. 2.
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~depletion! of A in the surface layer~next to surface layer! is
much higher. This layered structure evolves more slowly
time because the bulk domains have not established con
with the surface layer on the time-scales of our simulati
Thus, growth of the wetting layer occurs only through diff
sive transport ofA from the bulk through the depletion laye
in A. There are two regimes for diffusive growth@13#. In the
first regime, the attractive force due to the surface poten
gives a potential-dependent growth law. In the asympto
regime, the chemical potential gradient between the dom
in the bulk and the flat wetting layer gives rise to a
asymptotic growth lawR1(t);t1/3 provided that the pre-

re
n

FIG. 4. Analogous to Fig. 1 but for a~very! strong-field case
W0 /W0

Y54, where the surface is completely wetted by the p
ferred component in equilibrium.

FIG. 5. Analogous to Fig. 2 but for the evolution depicted
Fig. 4 for the strong-field case. The profiles are shown at timet
550 ~dot-dashed!, 100 ~dotted!, 200 ~dashed!, and 275~solid line!.
3-5



s
s

nt
al

r

o
n

h
e
v
o
t

ed
f t
el
o
s.

ed
re
g
e
th
te
ng

an
os
a

t o
he
he
ie
gy
er
d

elps

re
he
or-
ds
-
ng

-
s
ol-
rity
all

or
h
ain

d in
s,

ere

ve
e
tact
y-
he
eld
ially

ut-
rch
nd

in

SORIN BASTEA, SANJAY PURI, AND JOEL L. LEBOWITZ PHYSICAL REVIEW E63 041513
ferred component is not the majority component. The cro
over time between the first and second regimes depend
the strength and range of the surface potential@13#. In the
present case, we have a long-ranged surface pote
@V(z);z23#. The corresponding exponent for the potenti
dependent growth regime isf50.2 ~in general,f51/(n
12) for V(z);z2n @14#! and the asymptotic exponent fo
diffusive growth isf51/3.

The growth of the location of the first and second zeros
the laterally averaged profile for this case is shown as a fu
tion of t1/3 in Fig. 6. This plot is consistent with growt
driven by the chemical potential gradient between curv
domains in the bulk and the flat wetting layer. As we ha
remarked earlier, the strong layering inhibits the operation
draining modes to the surface layer, which would give rise
the expected asymptotic behaviorR1(t);t. We also show in
Fig. 7 the growth of the first zero of the laterally averag
profiles for all the cases that we studied. The sharpness o
transition between the growth in the weak and strong fi
cases is remarkable and is in very good agreement with
analysis of the partial and complete wetting morphologie

V. DISCUSSION

Our mesoscopic-level modeling is in terms of coupl
Vlasov-Boltzmann equations for binary hard-sphere mixtu
with additional long-range interactions. The major advanta
of our modeling is that it enables the study of much larg
systems than those accessible in MD simulations. At
same time, we are still able to identify scales and parame
in terms of microscopic quantities—in contrast to modeli
via coarse-grained partial differential equations.

The present work has focused on the morphology
temporal evolution of surface-directed spinodal decomp
tion waves in critical binary fluids. We have considered p
rameter values where the surface is either partially we
completely wet in equilibrium. It is not our argument that t
asymptotic behavior of these two cases is different. Rat
we would like to stress the appearance of long-lived trans
regimes that are critically dependent on the morpholo
These should be of relevance in the interpretation of exp
ments. A confusing range of exponents have been reporte

FIG. 6. Plot of first zeroR1(t) vs t1/3 ~circles!, and second zero
R2(t) vs t1/3 ~triangles! of the laterally averaged profiles shown
Fig. 5.
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various studies and we believe that the present work h
systematize these exponents.

~a! Let us first focus on the diffusive problem. These a
relevant for binary fluids at early times. Furthermore, if t
composition of the binary fluid is such that the domain m
phology is not continuous, domain growth again procee
through diffusive processes@1#. For cases where the pre
ferred component is the minority component, the wetti
layer exhibits a potential-dependent growth law,R1(t)
;t1/(n12) for V(z);z2n @13#, which crosses over to a uni
versal growth law,R1(t);t1/3. The crossover time depend
on the surface field strength and the wetting-layer morph
ogy. For cases where the preferred component is the majo
component, a potential-dependent growth law applies for
time @13#.

~b! Let us next consider the hydrodynamic case. F
strongly off-critical compositions, hydrodynamic growt
modes are inactive because of the discontinuous dom
morphology. As we have stated earlier, the results quote
~a! apply for this case. For bicontinuous bulk morphologie
wetting-layer growth can be characterized as follows. Th
is an early-time growth@fast mode withLs(t);t3/2# associ-
ated with the formation of a coating layer@7,9#. Subse-
quently, we expect the wetting layer to exhibit the diffusi
behavior outlined in~a! above. The asymptotic regim
@R1(t);t# is accessed when the bulk establishes con
with the wetting layer enabling the activation of hydrod
namic draining modes. Again, the crossover to t
asymptotic behavior is dependent on the surface fi
strength and surface morphology, and can be substant
delayed for strongly-layered surface structures.
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FIG. 7. Time evolution of the first zero,R1, of the laterally
averaged profile for all cases studied: from top,W0 /W0

Y50.67,
1.33, 2.67, 4.0, and 5.33.
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