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Surface-directed spinodal decomposition in binary fluid mixtures
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We consider the phase separation of binary fluids in contact with a surface, which is preferentially wetted by
one of the components of the mixture. We review the results available for this problem and present numerical
results obtained using a mesoscopic level simulation technique for the three-dimensional problem.
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I. INTRODUCTION cally alter the nature of domain growth in the bulk phase-
separation problem. Therefore, it is reasonable to expect im-
There has been much interest in the phase-separation dportant physical effects to result from hydrodynamic flows in
namics of homogeneous binary mixtures, which have beethe case of surface-directed phase separation also. To under-
rendered thermodynamically unstable by a rapid quench betand some of the issues involved, we have undertaken a
low the coexistence curve. The time evolution of pure bulkdetailed numerical simulation of this problem. In particular,
mixtures in which the evolving system coarsens into do\We adapted mesoscopic models formulated to study bulk
mains rich in either of the components is now reasonabl;?p!mda' decomposition in binary fluids to surface-directed

well-understood. These domains are characterized for latgPinodal decomposition. . :
times by a single length scale(t)~t%, wheret is the time This paper is organized as follows. Section Il reviews

and the growth exponewt depends upon the system Consiol_avallable experimental, analytical, and numerical results for

. this problem. In Sec. lll, we describe our model and the
ered, e.g., whether or not the order parameter is conserve . ; L
. numerical methods used. These involve an “integration” of
the relevance of hydrodynamic effects, dtt].

. : o . the Vlasov-Boltzmann equations for the binary mixture in
An experimentally important variation of this problem .,nact with a surface. In Sec. IV, we present results ob-
considers the role of surfaces with a preferential attractionsined from our simulations. Finally, Sec. V is devoted to a
for one of the components of the mixture. The first eXperi'summary and discussion of the res’ults.

mental study of this problem is due to Joresal. [2] who
considered unstable polymer mixtures of polyethylene pro-
pylene (PEP and perdeuterated PEB-PEB in a thin-film
geometry. The surface energy of d-PEP is somewhat less A. Experimental studies
than that of PEP leading, in addition to bulk phase separation

(spinodal decomposition to a preferential deposition of nary fluids near a surface is due to Guenetial. [6], which

S-ZEIZ(?;]ag);iiirgﬁ ngﬁlg:'a‘logﬂ';g:'s? J?;te; .?élg ?(gfnr-th Sonsidered unstable mixtures of cyclohexé@gand metha-
g P P ol (M) in contact with a surface that preferred M. The sur-

surface. The bulk is characterized by randomly oriente . ) i
. . . ace rapidly developed a M-rich layer, followed by a bicon-
phase-separation profiles and the lateral averaging procedure ) X
; : ; tinuous domain structure. Guenognhal. found that domain
does not yield a systematic behavior. However, the surface

exhibits an enrichment layer in the preferred Component(‘:jrowth was characterized by a number of different length

N : . : Scales. Thus, the wetting layer grew Bs(t)~t? with a
which is followed by a depletion layer. This oscillatory pro- ™ : . y
file is time dependent and decays with a characteristic IengtrTo'SG'. The domains adlace”t. to the wetting quer Were an-

- Isotropic and were characterized by perpendicylar (t)

to the bulk composition. ~t® with b=0.64] and lle[L(t) ~ t¢ with c=1] scal

This experiment motivated many further investigations of WV\IItI S q an pkarzﬁa[ I( )d (\;V' 't?_l K s_ga €s.
this problem. The experimental techniques and results havte ! ZfIUS Tm. co-wor erd PE?DHS' elred E”t'\;a u|th|x- ¢
been reviewed by Krauscl8] and the theoretical and nu- ures of polyisoprene an sealed between two quartz

merical developments by Puri and Frigef] and Binder[4] plates. They found that the structure factor exhibited two
To date, most numerical studies of this problem have fopeaks—one corresponding to the usuall bulk domain length
cused on the case of binary mixtures without hydrodynamiécalel‘b(t)~t32nd the other corresponding to a fast .Iength
effects, i.e., the growth of surface wetting layers and bul caleL(t)~t"* Furthermore, they found that the dimen-

domains is governed by diffusive processes. However, man jonality of domain growth associated with the fast length
important experiments in this area involve binary fluids in cale wagl=2 suggesting that it resulted from a rapid coars-

contact with a surface. It is well known that macroscopicen'ng in the surface layer. The rapid surface growth was

matter and energy flows, i.e., hydrodynamic effects drastiif1terprete0| as a prelude to the formation of a_comp!ete wet-
T ting layer on the surface. In that case, there is no inconsis-

tency between their results and the earlier results of Guenoun
*Present address: Lawrence Livermore National Laboratoryet al.' [6]. which correspond to later 'Flmes When.a complete
P. O. Box 808, Livermore, CA 94550. Email address: Vetting layer was already formed. Similar experiments were
bastea2@lIInl.gov also performed by Shi and collaboratdB on mixtures of

IIl. SUMMARY OF AVAILABLE RESULTS

One of the earliest experiments on phase-separating bi-
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guaiacol and glycerol-water confined in a thin-film geom-potential gradient between the bulk tuhe;- (o/L) [1], and

etry. the flat tube portion at the surface,~0, induces a current
Detailed studies of the morphologies that arise for phasej~ (o/L?) and therefore a flux per tube . The corre-

separating mixtures confined to one- and two-dimensionasponding growth law is theR;(t) ~ o33,

capillaries were performed by Tanaka and co-woflédron The wetting layer grows until it reaches the equilibrium

critical and off-critical mixtures of polyvinyl methyl ether length (dictated by the composition for a CW morphology

and water ande-caprolactone oligomer and styrene oligo- or is destabilized by surface fluctuations and goes over to the

mer. In particular, they clarified conditions under which theappropriate equilibrium PW morphology. There is also a dy-

equilibrium state is completely wét.e., only the preferred namical coupling of phase separation and the growth of the

phase is in contact with the surfacer partially wet(i.e.,  wetting layer, which leads to the domains adjacent to the

both phases are in contact with the surfad@naka’s group  wetting layer being anisotropic with, (t)<L(t) [6,4].

did not observe the fast growth reported by Wiltzius and

co-workers[7,8] possibly because the quench depth in their C. Numerical results

experiments was too large. Once the wetting layer is formed, . . . .
they found that its thickness grows linearly in time, i.e., One of the earliest numerical studies of the hydrodynamic

R1(t)~t, in disagreement with the experiments of GuenourProblem is dug to Kebliqsl@t a,l' [15] whp perforr_ned mo-
et al. [6]. In most of their experiments, the wetting layer is [€cular dynamics(MD) simulations of binary fluids AB)

finally destabilized by a Rayleigh instability and the systemconfined in a two-dimensional capillarfor a planar thin
crosses over to a partially wet morphology. film). One of the cases that they study is when the wall
preferentially attracts\, which is analogous to the experi-
ments we have discussed earlier. In this case they observe a
“fast mode” in the surface layer but with an exponential
owth rather than the power-law growth.

Chen and Chakrabaliftl6] have studied phase separation
in two-dimensional binary fluids near a surface through nu-
merical solutions of the coarse-grained moHekquations

[1] in a semi-infinite geometry. The model-equations con-
sist of coupled dynamical equations for the order parameter
and the fluid velocity field. Chen and Chakrabarti considered

when (yg—vya)/o>1, which corresponds to a situation ; ihoal ttraction f f th
where the preferred fluidA) completely wets the substrate. & Suftace with a long-range a raf‘: lon .otone ot the compo-
nents of the mixture and impose “no-slip” conditions on the

The effects of geometry and composition can also be in- S )
cluded[9,11,12. velocity field at the surface. They found that the wetting-

neous critical binary mixturéat high temperatujen contact ~ bulk diffusive growth in any dimensioro Ry (t)~t** (char-
with a surface that has a preference for one of the compaoacteristic of bulk hydrodynamic growth th=2). This cross-
nents of the mixture. At timé=0, the system is quenched over is associated with domains of the preferred component
below its critical temperature and becomes unstable to phasstablishing contact with the surface layer and their subse-
separation. We are interested in the dynamics of approach guent rapid draining into the surface layer.
the equilibrium morphology, which will consist of either par-  Another study of modeH in a semi-infinite geometry is
tially wet (PW) or completely wet(CW) configurations. due to Tanaka and AraKil7]. These authors solved the
Typically, the surface is initially coated by the preferred modelH equations numerically id=3. They found that the
component, which is then followed by the growth of the wetting-layer thickness grows initially &, (t)~tY® (char-
wetting layer{9]. We focus here on the wetting layer growth. acteristic of diffusive growthand then crosses over to the
As remarked by Siggigh], the bicontinuous morphology hydrodynamic regime withR(t)~t. They also studied char-
of critical or near-critical phase separating binary fluids con-acteristic length scales in the layer parallel to the surface. Far
sists essentially of interpenetrating “tubes.” When a tube offrom the surface, they found the expected bulk-growth law
the preferred phase establishes contact with the surface layérj(t)~t while in the vicinity of the surface they found a
the curvature-induced pressure gradiefit? leads to a flow  faster growth. However, it seems difficult to unambiguously
of material from the tube to the surface. The material flux perassign an exponent to this faster growth. Furthermore, the
tube can be estimated, for example, from Poiseuille law to bé&ime-regime of the fast mode is considerably later than the
(a/m)L? [5]. Then S(dR,/dt)~(a/7)L(t)?[S/L(t)?], time-scale of formation of the complete wetting layer. This
where S is the surface area an®/L(t)? is the number of suggests to us that the “fast growth” observed by Tanaka
tubes. ThusR,(t)~ (a/ 5)t for the hydrodynamic problem, and Araki should be identified with the anisotropic growth
a result that has been confirmed experimentglly We be-  (with L, <L) of domains in the vicinity of the wetting layer
lieve that the discrepancy between this result and the earlietue to orientational effects of the wetting layer, rather than
experimental work of Guenouet al. [6] is due to the long- the fast mode of Wiltzius and othefg,8]. As we have dis-
lived transient growth laws dependent upon the form of thecussed earlier, this fast mode is associated with the coating
surface potential13]. For the diffusive case, the chemical dynamics that results in a complete wetting layer.

B. Analytical arguments

The equilibrium behavior of immiscible binary fluids in
contact with a substrate was examined long ago by Young
[10]. Let YA and yg be the surface energies per unit area for
the fluids A and B in contact with the substratésay, yg
>1v,), and leto be the surface tension between fluAlsnd
B. Then, the contact anglé betweenA and the surface is
given by ocosf=vyg—7y,. This equation has no solution
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Finally, we mention a MD study by Toxvaefd8] who (DSMC) algorithm [23] for close-range collisions and the
investigated critical mixturesAB) of particles interacting grid-weighting method for the long-range repulsidr],
through Lennard-Jones potentials. He focused on the mocontains the essential physical ingredients of the Vlasov-
phologies that arise for different wall-types, e.g., one wallBoltzmann equations, and it permits the study of much big-
attractsA whereas the other wall attracBversus the case ger systems than those used in MD calculations.
where both walls attracA and B equally, etc. Using MD In the present work, we modify the model of REI9] to
simulation, he found that the system evolves into a layeredhclude the presence of a preferred surface. One of the com-
morphology with the layer being parallel to the surfaceponents of the binary mixturésay, A) interacts with the
walls. We believe that these are metastable configurationsurface located a=0 through an attractive potenti#/(z),
that evolve exceedingly slowly due to the low effective di- which decays ag™ 2 at large distances, i.eW(z) = —W, if
mensionality =1) of the system. z=<ry and—Wjy(ro/2)2 otherwise, wher&V,>0. This inter-

The paucity of detailed numerical results for binary fluidsaction potential corresponds to the case of nonretarded van
undergoing phase separation in contact with a wetting surder Waals interactions id=3 [25]. The wall is diffusive
face motivated us to undertake a mesoscopic-level simulg26], i.e., particles “hitting” the wall are absorbed and re-
tion of this problem through a direct “solution” of the rel- emitted isotropically with a velocity drawn from a Maxwell-

evant Vlasov-Boltzmann equations. ian distribution with the temperature of the wally,, . The
other wall along the direction is purely reflectivéno pre-
Ill. DESCRIPTION OF MODEL ferred attraction which allows us to run the simulations for

) o . longer times than if the set up was symmetric. We performed

The subtle interplay between diffusion and convectiongimjations with equal fractions of the components at fixed
that occurs in phase-separating fluids makes the modeling ?émperatureT/Tc=O.6 Tw=T, whereT, is the bulk mean-

these systems more complicated than that of solids. The locgkbq critical temperature of the system, using the velocity-

conservation of linear momentum and energy, which is Charfescaling technique introduced by Berendseal.[27]. Be-
acteristic of fluids, and the associated transport of matter ang, T, the bulk fluid segregates intd rich and B rich

energy on macroscopic scales play a crucial role during,mnanents, denoted by 1 and 2, respectively. The parameter
phase segregation. Typically, the phase separation of binagy,rieq was the strength of the wall-particle interactit.

fluids has been modeled eith@) at the microscopic level, As discussed in Sec. I B, the wall-wetting morphology,
e.g., via MD simulations ofb) at the macroscopic level via i.e., CW versus PW, is determined by the raif{ y,— v,)
coarse-grained hydrodynamm equations. An alternative Qhereo is the surface tension between the two fluid phases
these approaches was introduced in R&f]. The system 1 and 2, andy, and y, are the corresponding wall-fluid
urface tensions. Taking into account tiaand B are par-

studied was a binary mixture consisting/AfandB particles
ially miscible, the surface tension parameters can be esti-

with short-range repulsive interactions modeled by har
mated as follows. Consider tiferich phasg1) with average

spheres with equal massand diameted, and a long-range
Gaussian repulsion between the two componéntnd B. total particle density, and average individual densitie§,

The dynamics was described by coupled Vlasov-Boltzmann 0 0 0 . :
kinetic equations, and njg, Ng=nja+nig. The wall-fluid surface energy is

then
STV T gy it i=12, (1)
where f;(r,v,t) are the one-particle distribution functions, 1= jo dzma(z)W(2). 2

Fi(r,t)=—VVi(r), Vi(n)=SV([r=r')n;(r')dr’ (Vlasov
potentia), n;(r")=[f;(r',v,t)dv, with i#]j, and J[f,g] is
the Boltzmann collision operator for hard-core interactions
[20]. The Boltzmann equation properly describes the dynamif we neglect the interparticle spatial correlations, which is
ics of dilute gases, where the free flow of the particles isappropriate in our model if the long-range repulsion between
interrupted by localized binary collisions between particlesthe two components is sufficiently weak, we can write
that are uncorrelated. The Vlasov term takes into account thﬁlA(z)=n2Aex;{—,3\N(z)]. With this assumption and using
long-range interaction in the spirit of the mean-field approxi-the fact that the phases are symmetric, we obtain the expres-
mation: each particle now moves between collisions in thejgn
background potential generated by all the other particles it is
interacting with through the long-range potent&lr).

The above mesoscopic representation in terms of one- Y2— v1=kgTNgepor gH(BWy), (3
particle distribution functions has the advantage that the rel-
evant conservation laws are automatically satisfied and it
also provides a rigorous route to a macroscopic descriptiowherex ¢, is the average order parameter in the two phases,
[21]. Computationally, the method introduced in Refs.qﬁoz(n‘fA—n‘fB)/no, and the functiorH(x) depends on the
[19,22 to simulate the Vlasov-Boltzmann kinetics at the par-wall-interaction potential. For our choice of wall-particle in-
ticle level, i.e., coupling of the direct simulation Monte Carlo teraction, we have
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H(x)=x exp(x)+(1/2)Jldyexp(xy3/2)
0

The surface tensionr between the two phases 1 and 2 is
related to the profile of the planar interface separating the
equilibrium phase$28]. For our system this can be written
as

o=m [ dzdnalisn?-@nazy @

[28,29, where n(z)d(z)=np(z)—ng(z), n(z)=na(2)
+ng(z), andm=(1/12)fdrV(r)r? with V/(r) the long-range
repulsive interaction between the two speci@®é.R. Herez
stands for the distance from the center of a planar interface
separating the two bulk phasgés remarked if19] and is

well known for these system&8], ¢(z) is well represented

as ¢pgtanh/2¢), whereé is a correlation length that charac-
terizes the interface thickness. Furthermore, the total density
profile n(z) is well characterized agg[1— dsechg/2¢)],
where ¢y andng are the values of the order parameter and
density far from the interface. With these considerations, the
surface tension between phases 1 and 2 can be computed as

kgTcnoG( ¢, 6)
o= ———"]/——"—"".

4y%¢
FIG. 1. Snapshots of the evolution after a critical quench for a
Here ,)/71 |S the range Of the |nterspec|es potenual weak-field CaSéNO/Wg:067 The eqUIllbrIum surface morphol-
V(r)=ay3U(yr) where, as in[19], we use U(X) ogy is partially wet. The times corresponding to the pictures are
— 7 ¥2exp(—x?) (note thakgT.=nea/2[19]). The function  (from top to bottom t=60,120,180.
G(¢q,6) has a simple algebraic form,

5

IV. NUMERICAL RESULTS

G( g, 0)=(213) p2— (1/3) 8%+ (7/15) 6*p5— (7l4) 5 3.
(60,0)=(23 $5— (113 5"+ (7/15 8o~ (ml4) 665 As discussed in the previous sectionj,/WY<1 and

Y
Therefore, we obtain the desired ratio for Young's condition"Vo/Wo>1 should correspond to the PW and CW cases,

as respectively. In our subsequent discussion, we will refer to
W,o/Wy<1 as the weak-field case aMly/Wy>1 as the
o T, G(¢g, ) 1 strop_g—field case. Of course, we should stress that there are
== . (6)  additional entropic effects, which have not been accounted
v2mvi T o AyPergH(BWo) for in our calculation. In general, this would raise the critical

surface field for transition from PW to CW morphologies.
The physical quantitieg, o, and ¢, have been obtained in  Figure 1 shows three-dimensional snapshots of the evolu-
simulations of the interface profile &/T;=0.6[19] as&  tion for W,/WY=0.67 at timest=60, 120, and 180. The
=1.5y"", ¢0=0.8,6=0.2, and we seto= y ' Recallthat \all is located az=0 (extreme right and preferentially at-
we vary the surface potential strendiif, and keep other tractsA though it is not completely wetted by. The enrich-
parameters fixed as specified above. We then estimai@ent jayer(in A) at the surface is followed by a depletion
Young's condition as corresponding Wg=0.071. We |ayer in A and this layered structure deforms continuously
have performed simulations withVy /W ranging from 0.67 into the bulk, as has been seen in various earlier studies for
to about 5. The size of the system was<@iXx 120 in units  both the diffusive[14], [4], and hydrodynami¢17] cases.
of the potential range/ ! and the number of particles used Figure 2 shows laterally averaged profiles,(z,t) vs z
was approximatelyN=2.5x10°. For each value oM, (depth from the surfagefor the evolution depicted in Fig. 1
we averaged the results of 12—15 independent runs, wheat timest=50, 100, 200, and 275. These profiles are ob-
ever statistical averaging was required. In the figuresained by averaging the order parameter profiles in the direc-
presented below the unit of length 48 * and the unit of tion parallel to the surface—analogous to the corresponding
time is the mean-free-time between collisions=\/c, experimental situatiof8]. There is a systematic profile at the
A= (2Y2mnd?) ~1,c=(2kgT/m)¥2, wheren is the overall surface, which decays to zefdue to isotropic phase sepa-
particle densityd is the hard sphere diameter, amds the  ration in the bulk. The systematic surface profile propagates
temperature. into the bulk with the passage of time. Furthermore, the de-
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0.6

o 25 50 75
z
FIG. 2. Laterally averaged order parameter profites(z,t) as
a function ofz, the distance from the surface. Parameter values are
the same as those for the evolution depicted in Fig. 1. The evolution
times aret=>50 (dot-dashey] 100 (dotted, 200 (dashed, and 275
(solid line).

gree of enrichment diminishes as isotropic phase separation
in the bulk destroys the layered structure at the surface.

To characterize the morphology of the surface layer, Fig.
3 plots the first and second zeros of the laterally averaged
profiles as a function of time. After an initial transient re-
gime, the position of the first and second zeros grow approxi-
mately linearly in time. The linear growth of the first zero
results from hydrodynamic draining of the preferred material
to the surface through bulk tubes that make contact with the 5 4 Analogous to Fig. 1 but for &very) strong-field case
surface layer. This is in accordance with the observation o{NO IW!=4, where the surface is completely wetted by the pre-
Tanaka and Arakj17], and the mechanism for this was dis- ferred component in equilibrium.
cussed in Sec. IIB. Additionally, it is reasonable to expect
that the overall composition of the first and second layers

should be comparable with the average composition. _ThUSEdepIetior) of Ain the surface layefmext to surface layeiis
we expect the second zeiR,(t), to exhibit the same scaling much higher. This layered structure evolves more slowly in
behavior as the first zer®, (t). time because the bulk domains have not established contact
Next we consider the evolution for thgery) strong-field  with the surface layer on the time-scales of our simulation.
case, where the surface is Completely wetted by the preferreﬂ]usl growth of the Wetung |ayer occurs 0n|y through diffu-
component. Figure 4 shows three-dimensional evolution picsjye transport ofA from the bulk through the depletion layer
tures for the cas@,/Wy=4 att=60, 120, and 180. Notice in A. There are two regimes for diffusive growfth3]. In the
the perfectly layered structure at the surface. Figures 1 and first regime, the attractive force due to the surface potential
should be compared with analogous pictures for the diffusivejives a potential-dependent growth law. In the asymptotic
problem[4]. Figure 5 shows the corresponding laterally av-regime, the chemical potential gradient between the domains
eraged profiles at=50, 100, 200, and 275. The broad fea-in the bulk and the flat wetting layer gives rise to an
tures are the same as in Fig. 2, but the level of enrichmenisymptotic growth lawR;(t)~tY® provided that the pre-

30 ; ; 1p
\u
ADA
20 ¢ AAAAAAAAAA 05
AA
s
R1’z(t) AAAAA (Pav(z’t) 0r
MAAAAA [
10 1 1 i
M -0.5
A
o0
ol , . 1 . .
0 100 200 300 0 25 50 75
t z
FIG. 3. Time-dependence of first zeRy(t) (circles and sec- FIG. 5. Analogous to Fig. 2 but for the evolution depicted in
ond zeroR,(t) (triangles of the laterally averaged profiles shown Fig. 4 for the strong-field case. The profiles are shown at times
in Fig. 2. =50 (dot-dashej 100 (dotted, 200 (dashed, and 275(solid line).
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20 ' - 10

P

A
R1,2(t) 10 ¢ R AAAA 1 R1(t)

o © OOOM

0 3 6 1 . .
™ 1 10 100

FIG. 6. Plot of first zerdR,(t) vs t'* (circles, and second zero
R,(t) vs t*3 (triangle$ of the laterally averaged profiles shown in
Fig. 5.

FIG. 7. Time evolution of the first zerdR,, of the laterally
averaged profile for all cases studied: from t(wo/wg:o.es?,
1.33, 2.67, 4.0, and 5.33.

ferred component is not the majority component. The cross-
over time between the first and second regimes depends on ) _
the strength and range of the surface poterjtid]. In the  Various studies and we believe that the present work helps
present case, we have a long-ranged surface potentifystematize these exponents.
[V(2)~z 2]. The corresponding exponent for the potential- (&) Let us first focus on the diffusive problem. These are
dependent growth regime i$=0.2 (in general, ¢=1/(n relevant for binary fluids at early times. Furthermore, if the
+2) for V(2)~z " [14]) and the asymptotic exponent for composition of the binary fluid is such that the domain mor-
diffusive growth is¢=1/3. phology is not continuous, domain growth again proceeds
The growth of the location of the first and second zeros othrough diffusive processedd]. For cases where the pre-
the laterally averaged profile for this case is shown as a funderred component is the minority component, the wetting
tion of t¥* in Fig. 6. This plot is consistent with growth layer exhibits a potential-dependent growth laRy(t)
driven by the chemical potential gradient between curved-tY("*2) for \/(z)~z"" [13], which crosses over to a uni-
domains in the bulk and the flat wetting layer. As we haveyersal growth lawR, (t) ~t%. The crossover time depends
remarked earlier, the strong layering inhibits the operation opn the surface field strength and the wetting-layer morphol-
draining modes to the surface layer, which would give rise toygy. For cases where the preferred component is the majority

the expected asymptotic behaviey(t)~t. We also show in  component, a potential-dependent growth law applies for all
Fig. 7 the growth of the first zero of the laterally averaged;jme [13].

profiles for all the cases that we studied. The sharpness of the (b) Let us next consider the hydrodynamic case. For
transition between the growth in the weak and strong fiel
cases is remarkable and is in very good agreement with o
analysis of the partial and complete wetting morphologies.

d'strongly off-critical compositions, hydrodynamic growth
odes are inactive because of the discontinuous domain

morphology. As we have stated earlier, the results quoted in

(a) apply for this case. For bicontinuous bulk morphologies,

wetting-layer growth can be characterized as follows. There

V. DISCUSSION is an early-time growttifast mode withL ¢(t) ~t*?] associ-

Our mesoscopic-level modeling is in terms of coupleg@ted with the formation of a coating lay¢7,9]. Subse-

Vlasov-Boltzmann equations for binary hard-sphere mixture§luently, we expect the wetting layer to exhibit the diffusive

with additional long-range interactions. The major advantagdehavior outlined in(a above. The asymptotic regime

of our modeling is that it enables the study of much largef Ri(t)~t] is accessed when the bulk establishes contact

systems than those accessible in MD simulations. At thavith the wetting layer enabling the activation of hydrody-

same time, we are still able to identify scales and parametersamic draining modes. Again, the crossover to the

in terms of microscopic quantities—in contrast to modelingasymptotic behavior is dependent on the surface field

via coarse-grained partial differential equations. strength and surface morphology, and can be substantially
The present work has focused on the morphology andielayed for strongly-layered surface structures.

temporal evolution of surface-directed spinodal decomposi-

tion waves in critical binary fluids. We have considered pa-

rameter values where the surface is either partially wet or

completely wet in equilibrium. It is not our argument that the ACKNOWLEDGMENTS
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